High frequency stimulation induces sonic hedgehog release from hippocampal neurons
نویسندگان
چکیده
منابع مشابه
High frequency stimulation induces sonic hedgehog release from hippocampal neurons
Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreove...
متن کاملSonic hedgehog promotes autophagy in hippocampal neurons
The Sonic hedgehog (Shh) signaling pathway is well known in patterning of the neural tube during embryonic development, but its emerging role in differentiated neurons is less understood. Here we report that Shh enhances autophagy in cultured hippocampal neurons. Microarray analysis reveals the upregulation of multiple autophagy-related genes in neurons in response to Shh application. Through a...
متن کاملDendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation.
UNLABELLED The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the tra...
متن کاملProbing extracellular Sonic hedgehog in neurons
The bioactivity of Sonic hedgehog (Shh) depends on specific lipid modifications; a palmitate at its N-terminus and a cholesterol at its C-terminus. This dual-lipid modification makes Shh molecules lipophilic, which prevents them from diffusing freely in extracellular space. Multiple lines of evidence indicate that Shh proteins are carried by various forms of extracellular vesicles (EVs). It als...
متن کاملHigh-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons
Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1(ARH)) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characteriz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2017
ISSN: 2045-2322
DOI: 10.1038/srep43865